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Abstract

In this paper, an adaptive spatial clustering method is presented for automatic brain MR image segmentation, which is based on a
competitive learning algorithm – self-organizing map (SOM). We use a pattern recognition approach in terms of feature generation and
classifier design. Firstly, a multi-dimensional feature vector is constructed using local spatial information. Then, an adaptive spatial
growing hierarchical SOM (ASGHSOM) is proposed as the classifier, which is an extension of SOM, fusing multi-scale segmentation
with the competitive learning clustering algorithm to overcome the problem of overlapping grey-scale intensities on boundary regions.
Furthermore, an adaptive spatial distance is integrated with ASGHSOM, in which local spatial information is considered in the cluster-
ing process to reduce the noise effect and the classification ambiguity. Our proposed method is validated by extensive experiments using
both simulated and real MR data with varying noise level, and is compared with the state-of-the-art algorithms.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

In medical images, the brain has a complicated struc-
ture, and segmentation of brain tissues in MR images plays
a crucial role [1]. In this paper, we partition brain MR
images into three main tissue types: white matter (WM),
grey matter (GM), and cerebrospinal fluid (CSF), which
is a topic of great importance.

Clustering [2,3] is the most popular method for medical
image segmentation, with artificial neural network, expec-
tation-maximization (EM), and Fuzzy c-Means (FCM)
algorithms being the typical methods. A common disad-
vantage of the EM algorithm is that the intensity distribu-
tion of brain images is modeled as a normal distribution,
which is not good for noisy images. The FCM algorithm

is over sensitive to noise, and many extensions to FCM
[1,4] have been proposed to overcome its drawback.

In artificial neural network techniques, SOM is often
used in MR image segmentation [5–7] as an unsupervised
method. However, the segmentation results are deterio-
rated by the noise and overlapping grey-scale intensities
for different tissues in MR images.

In this paper, we present an adaptive spatial clustering
method for brain MR image segmentation. Firstly, we con-
struct a multi-dimensional feature vector using local spatial
information. Then, we propose an adaptive spatial growing
hierarchical SOM (ASGHSOM). It is a hierarchical SOM,
where neurons at the lower level can adaptively grow child
SOMs at the higher level under some conditions. More-
over, an adaptive spatial similarity distance is proposed
to integrate with ASGHSOM, in which local spatial infor-
mation is considered in the clustering process to reduce the
noise effect and the classification ambiguity.
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The key features of the proposed method are:

(1) Combining global intensity with local neighboring
information to provide effective feature representation.

(2) Fusing multi-scale segmentation with the competitive
learning clustering approach to solve the problem of
overlapping grey-scale intensities for different tissues.

(3) An adaptive spatial distance is proposed for ASGH-
SOM, considering local spatial information between
image voxels to reduce the noise effect and the classi-
fication ambiguity.

(4) The map structure and size of the growing layer are
adaptively determined according to the image data.

(5) Segmentation is entirely unsupervised without using
any probability map to obtain the prior information.
Therefore, registration processes are not required and
the applicability of our proposed method can be
extended to diseased brains and neonatal brains.

The rest of this paper is organized as follows. Section 2
briefly describes Kohonen’s self-organizing map. In Section
3, our proposed adaptive spatial clustering method is
described for MR image segmentation in detail. Experi-
mental results are presented in Section 4 and we conclude
this paper in Section 5.

2. Preliminaries

In this section, we will briefly review Kohonen’s self-
organizing map (SOM) [8]. It is a two-layer feedforward
competitive learning network, consisting of an input layer
and a single output layer of neurons, which usually form
a two-dimensional array. In the output layer, each neuron
i has a d-dimensional weight vector wi. Let fv denote the
input vector of voxel v in 3D image domain I. The iterative
SOM training algorithm is described as follows:

Step 1: set iteration t ¼ 0 and the weights of neurons in
the output layer with random values.

Step 2: randomly select a sample data vector fv of voxel
v from a training set.

Step 3: compute the distance dv;i between fv and each
neuron i in the output layer.

dv;i ¼ kfv � wik; i 2 f1; . . . ;Ng; v 2 I ð1Þ

where N is the number of neurons in the output layer. The
winning neuron, denoted by c, is the neuron with the
weight vector closest to fv.

c ¼ arg min
i

dv;i; i 2 f1; . . . ;Ng

Step 4: update the winner neuron and its neighbor neu-
rons to move its feature vector towards the input vector.
The weight-updating rule in the sequential SOM algorithm
can be written as

wiðt þ 1Þ ¼
wiðtÞ þ aðtÞNtðc; iÞðfv � wiÞ 8i 2 Nc; v 2 I

wiðtÞ otherwise

�

where N c denotes the set of neighboring neurons of winner
c, and N tðc; iÞ is the neighborhood kernel function. aðtÞ is a
monotonically decreasing learning rate.

Step 5: stop if the maximum iteration is reached. Other-
wise, set t ¼ t þ 1 and go to step 2.

Because of the complicated structure of the brain, most
brain MR images always present overlapping grey-scale
intensities for different tissues, particularly on transitional
regions. Thus, there are some regions that are not parti-
tioned accurately in SOM segmentation results. Moreover,
unknown noise also influences the segmentation results.

Several improved SOM algorithms and SOM-related
algorithms have been proposed in recent years. Lee and
Peterson [9] proposed a self-development neural network
with two levels of adaptation – namely, structure and
parameter levels. However, maintaining a regular connec-
tivity has been proven to be a difficult task during structure
adaptation [9]. Hierarchical SOM (HSOM) is another var-
iation of SOM [10]. The basic idea of HSOM is to use
multiple SOMs from the low-resolution level to the high-
resolution level, but the number of neurons in each layer
is predefined. Growing hierarchical SOM (GHSOM) [11]
is another HSOM. It can grow neurons horizontally at
each level or vertically for the whole structure under some
condition. In the next section, we propose an adaptive spa-
tial growing hierarchical self-organizing map to segment
T1-weighted brain MR images.

3. Adaptive spatial clustering method

In this section, a detailed description about our pro-
posed segmentation method is presented for automatic
T1-weighted brain MR image segmentation. Firstly, we
extract the feature vector from each voxel. Then, we pro-
pose the adaptive spatial growing hierarchical self-organiz-
ing map (ASGHSOM) as the classifier.

3.1. Feature extraction

Generally, using multispectral images (T1-, T2-, PD-
weighted images) will usually generate segmentation results
superior to those using single modality images [12,13].
However, extracting enough information from a single
modality image could make the segmentation based on it
potentially comparable to a multimodal approach [7,14].
In this paper, we exploit T1-weighted MR images and
expand each voxel into a multi-dimensional feature vector,
characterizing the image data beyond simple voxel intensi-
ties. In the low-contrast medical images, more features
should be extracted from local spatial information. Let Iv

denote the intensity of voxel v, and the set of neighbor vox-
els in up, down, left, right, front, and back directions is
defined as the 3D neighborhood Nv. Usually, average gra-
dient magnitude could provide most of the local character-
istics. When a voxel is on a smooth region, the average
gradient value would be small enough. Otherwise, if the
voxel is on the boundary region of different tissues, the
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average gradient would exceed a given threshold. There-
fore, the average gradient magnitude Gv is chosen as a local
feature, and computed by

Gv ¼
1

jN vj
X

v02Nv

Uv;v0 ð2Þ

where Uv;v0 ¼ kIv � Iv0 k is the distance between voxel v and
its neighbor v0 in N v, and jNvj is the cardinality of the neigh-
borhood set. However, in some conditions, the high value
of the average gradient also may be generated by the noise
and blur in brain MR images. To overcome this problem,
the mean value Mv of voxel v in its neighborhood is com-
puted as another local feature.

Mv ¼
1

jNvj
X

v02Nv

Iv0 ð3Þ

If the voxel is similar with most of its neighbors, the high
value of the average gradient is caused by noise. Otherwise,
it can be concluded that the voxel with high average gradi-
ent value is on the boundary region. Hence, for each voxel
v, the feature vector is extracted and has three components:
the intensity Iv, average gradient Gv, mean value Mv in its
neighborhood, denoted by fv ¼ ½Iv;Gv;Mv�.

3.2. ASGHSOM

In this subsection, we will introduce the adaptive spatial
distance, growing algorithm, training algorithm, and classi-
fication algorithm of ASGHSOM step by step.

3.2.1. An adaptive spatial distance

SOM contains a set of neurons that construct a feature
map, and each neuron i has a weight vector wi. The input is
compared with the neurons to find the winner that is most
similar, using the Euclidean distance (Eq. (1)). During this
process, each input voxel is assumed to be independent of
every other voxel. However, for real image data, many vox-
els are ambiguous and cannot be classified consistently
based on feature attributes alone. In this subsection, an
adaptive spatial distance is proposed for the ASGHSOM
algorithm, considering local spatial information between
image voxels to reduce the noise effect and the classification
ambiguity.

In the similarity matching phase of SOM, if voxel v is
similar with its neighboring voxel v0, we would like dv;i to
be greatly influenced by dv0 ;i so that they eventually have
higher similarity and excite the same neuron in the output
layer. Otherwise, dv;i should be largely independent of dv0 ;i.
So, the actual image feature could be preserved during the
noise smoothing process.

Taking all voxels in the 3D neighborhood Nv into
account, we define a new adaptive spatial distance equation
instead of Eq. (1) in the SOM algorithm that measures the
similarity between the input feature vector fv and neuron i

in the output layer, as

d�v;i ¼
1

jNvj
X

v02Nv

½dv;ikv;v0 þ dv0;ið1� kv;v0 Þ� ð4Þ

where N v is defined as the 3D neighborhood with the set of
neighbor voxels in up, down, left, right, front, and back
directions. kv;v0 is a weighting factor controlling the influ-
ence degree of the neighboring voxel v0 on the center voxel
v, with ranges between zero and one, defined by

kv;v0 ¼
1

1þ expð�bðUv;v0 � GvÞÞ
ð5Þ

The parameter Gv is the average gradient of center voxel v,
computed by Eq. (2), and Uv;v0 is the distance between voxel
v and its neighbor v0. When the difference between voxel v

and its neighbor v0 is much larger than the average gradient
Gv ðUv;v0 � GvÞ; kv;v0 � 1, the influence v0 on the center vox-
el v is suppressed in d�v;i, and v and v0 are less likely to excite
the same neuron. On the contrary, when v0 is similar with v,
i.e., Uv;v0 � Gv; kv;v0 � 0; v0 greatly influences v in d�v;i, and v
and v0 are more likely to excite the same neuron.

The constant parameter b specifies the steepness of the
sigmoid curve, which controls the influence degree of
the neighboring voxels on the center one. We hope that
the choice of b could make the clustering process not only
smooth out the noise voxels but also preserve the image
feature on the boundary regions. In our experiment, the
default value of b is set to 0.18, and its sensitivity analysis
will be discussed in Section 4.3.

The distance d�v;i effectively smoothes the cluster result of
voxel v by that of its neighbors. When v falls on a boundary
region, it is only affected by those neighboring voxels in the
same class. When v is on a smooth region and is affected by
all its neighbors, the influence of each neighbor v0 on v is
affected by the distance Uv;v0 , through the weighting kv;v0 .
Hence, d�v;i enables spatial interaction between neighboring
voxels and is adaptive to the image content.

It is important that adaptive spatial distance has a noise
suppression capability due to the adaptive smoothing oper-
ation. Random noise would either increase or decrease the
distance of the center voxel and the distances of its neigh-
boring voxels to neurons in the output layer randomly.
When the weighted average of these distances is taken,
the effect of random noise is smoothed out. The segmenta-
tion results of our method using adaptive spatial distance
(ASGHSOM) and without it (termed as GHSOM in the
following) are compared in Section 4.2.1. When the noise
level is increased, the segmentation results of ASGHSOM
are better than those of GHSOM.

3.2.2. Growing algorithm of ASGHSOM

Though the SOM algorithm with adaptive spatial dis-
tance could deal with the noise and blur in brain MR
images, the partial volume effect originating from the low
sensor resolution deteriorates the segmentation results of
the SOM algorithm. Therefore, using a single scale for an
entire image may not be appropriate. An adaptive growing
hierarchical SOM integrated with adaptive spatial distance
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(ASGHSOM) is proposed to solve the overlapping grey-
scale intensities problem on the boundary regions of
different tissues (partial volume effect). We construct the
ASGHSOM network with the first output layer size
4� 20, Gaussian neighborhood, and linear decrease of
the learning ratio. Different from Kohonen’s SOM, neu-
ron-clustered voxels on the boundary regions in the first
output layer (lower level) can adaptively generate its child
SOM at the higher level for re-segmentation. Therefore,
the growing conditions of ASGHSOM are defined to find
which neurons cluster voxels on the boundary regions.

At each layer of ASGHSOM, each neuron i has a three-
dimensional weight vector wi ¼ ½wiI ;wiG;wiM � correspond-
ing with the input feature vector fv ¼ ½Iv;Gv;Mv�. So
wn

iI ;w
n
iG;w

n
iM denote the intensity centroid, average gradient

centroid, and neighborhood mean centroid of voxels clus-
tered into the ith neuron of the nth output layer of ASGH-
SOM, respectively. The growing conditions are denoted as
follows:

If w1
iG > G Thresh and w1

iM � w1
iI

�

�

�

� > M Thresh are all
satisfied, neuron i in the first output layer spawns two neu-
rons as a child SOM in the second output layer. G Thresh
and M Thresh are constant thresholds taken according to
the experimental results, and we will discuss the choice of
them in Section 4.3.

Satisfying the growing conditions means that the high
value of the average gradient is not influenced by noise,
and the voxels clustered into neuron i in the first output
are on the boundary regions. So, generating a child SOM
in the second output layer implies that the voxels on the
boundary regions could be segmented again in a higher
scale.

Combining the concepts of self-organization and topo-
graphic mapping with multi-scale segmentation, ASGH-
SOM could deal with the overlapping grey-scale
intensities problem from the low-resolution level to the
high-resolution level. Comparing with other GHSOM,
ASGHSOM has one vertically growing layer and does
not grow neurons horizontally to simplify the growing pro-
cess and train the network faster. In the growing layer of
ASGHSOM, the network structure and size are adaptively
determined by the image data themselves. Fig. 1 shows the
structure chart of ASGHSOM.

3.2.3. Training algorithm of ASGHSOM

In the training phase, 30% voxels (not including voxels
of the background and extra-cranial tissues) are chosen
randomly from the tested T1-weighted brain MR image
data as the training samples. ASGHSOM will be re-trained
on each individual 3D MR image data rather than trained
only once. So rigid standardization and tight quality con-
trol of data acquisition, coupled with explicit intensity,
are not needed in our experiments.

When training each SOM in ASGHSOM, we implement
the original SOM algorithm except for substituting the dis-
tance dv;i with adaptive spatial distance d�v;i. The child
SOMs are trained with data associated with their mother
neurons. ASGHSOM completes the training of SOMs at
the first output layer and then proceeds to train SOMs at
the second output layer. Fig. 2 shows the flow chart of
the ASGHSOM training algorithm.

The ASGHSOM training algorithm is summarized as
follows:

Step 1: Set level n ¼ 1, iteration t1 ¼ 0, and initialize the
weights at the first output layer w1

i ¼ w1
iI ;w

1
iG;w

1
iM

� �

with
random values and the maximum training times T 1 of the
first output layer.

Fig. 1. The structure chart of ASGHSOM that grows neurons hierarchi-
cally when needed. Fig. 2. The flow chart of the ASGHSOM training algorithm.
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Step 2: Randomly select a sample feature vector fv of
voxel v from the training set.

Step 3: Compute the adaptive spatial distance d�v;i
between v and each neuron i in the first output layer
according to Eq. (4). Obtain the winning neuron c.

c ¼ arg min
i

d�v;i; i 2 f1; . . . ;Ng ð6Þ

where N is the number of neurons in the first output layer.
Step 4: Update the winner neuron and its neighbor neu-

rons to move its weight vector towards the input vector.
The weight-updating rule in the sequential ASGHSOM
algorithm, which is different from that of SOM, is rewritten
as

w1
i ðt1þ1Þ¼

w1
i ðt1Þþaðt1ÞNt1

ðc; iÞSgnðfv�w1
i ðt1ÞÞd�v;i 8i2Ncðt1Þ; v2 I

w1
i ðt1Þ otherwise

(

ð7Þ

where Nt1
ðc; iÞ ¼ exp � kri�rck2

2N2
c ðt1Þ

� �

is the Gaussian neighbor-

hood kernel function. ri is the coordinate of neuron i on
the first output layer and Ncðt1Þ ¼ N 0 1� t1

T

� 	

is the kernel
width. The parameter aðt1Þ ¼ a0 1� t1

T

� 	

is a monotonically
decreasing learning rate.

Step 5: Set t1 ¼ t1 þ 1. If t1 ¼ T 1, go to step 6. Otherwise,
go to step 2.

Step 6: Recursive loop: for each neuron i in the first out-
put layer, if the growing conditions w1

iG > G Thresh and
jw1

iM � w1
iI j > M Thresh are all satisfied, neuron i spawns

two neurons representing a child SOM in the second out-
put layer.

Step 7: Set level n ¼ 2, iteration t2 ¼ 0, and the weights
at the growing level w2

i ¼ w2
iI ;w

2
iG;w

2
iM

� �

with random
values.

Step 8: The child SOMs are trained with data associated
with their mother neurons, and the training method is the
same as the neurons in the first output layer.

Step 9: Stop if the maximum iteration times of the grow-
ing layer is reached. Otherwise, set t2 ¼ t2 þ 1 and go to 8.

3.2.4. Classification algorithm of ASGHSOM

When SOM is used for clustering, finding clusters
becomes a crucial task. A neuron is iteratively updated dur-
ing training based on the learning vectors so a well-trained
SOM represents a distribution of the input data over a two-
dimensional surface preserving topology. In this context, a
cluster can be defined as a group of neurons with short dis-
tances between them and long distances to the other neu-
rons [15].

In ASGHSOM, the leaf neurons representing the final
clustering results are scattered among different output lay-
ers. We should reconstruct a new map with the leaf neu-
rons, so the algorithm 1 in [15] can be adopted to cluster
the leaf neurons in ASGHSOM with three tissue classes.

The structure of the new map is the same as that of the
first output layer, and the locations of leaf neurons in the
new map depend on the locations of themselves (they are
in the first output layer without any child SOM) or their

mother neurons in the first output layer. For instance, let
neuron (2,3) represent the neuron in the second column,
third row of the first output layer. If this neuron has a child
SOM, its location will be substituted by its child neurons
with locations (1.75,3) and (2.25, 3) in the new map. Other-
wise, its location in the new map is (2,3), the same as that
in the first output layer. By this way, all the leaf neurons
are set in a new map. Fig. 3 shows a simulated recon-
structed map, where the dots represent the well-trained leaf
neurons, and dashed lines divide the regions associated
with each neuron of the first output layer.

In ASGHSOM, the leaf neurons related to the same tis-
sue have an approximate weight component wiI . In Algo-
rithm 1 proposed by Samsonova [15], we use wiI as the
attribute of leaf neuron i to label its tissue class.

4. Experimental results

In this section, we present a set of experiments to vali-
date our proposed clustering method. At first, we introduce
the database and two volumetric overlap metrics exploited
in our experiments. Then, the simulation test is presented
to evaluate the efficiency of our clustering method and fol-
lowed with the discussion on the parameters selection. At
last, our proposed clustering method is compared with
state-of-the-art methods on real brain MR image data.

4.1. Database and volumetric overlap metrics

4.1.1. Database

Our proposed method is tested on both simulated MR
images and real MR image data. The simulated MR image
database is obtained from the BrainWeb Simulated Brain
Database1 at the McConnel Brain Imaging Center of the
Montreal Neurological Institute (MNI), McGill Univer-
sity. In our experiments, we exploit the simulated MR

Fig. 3. A simulated new map with the dots represent the well-trained leaf
neurons and the dashed lines dividing the regions associated with each
neuron in the first output layer.

1 http://www.bic.mni.mcgill.ca/brainweb
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brain image data, with a slice thickness of 1 mm, volume
size of 217� 181� 181 voxels (pixels), 3–9% noise levels
and 20% intensity inhomogeneity. The real MR image
database is taken from the Center for Morphometrics
Analysis, Massachusetts General Hospital Repository
(IBSR).2 Twenty normal T1-weighted real MR data sets
are exploited from IBSR with a slice thickness of 3.1 mm.
These databases all provide the ground truth (expert’s seg-
mentation) for quantitative validation.

In the experiments, the number of tissue classes for seg-
mentation is set to three, which corresponds to CSF, GM
and WM. Background voxels are ignored in the computa-
tion, and extra-cranial tissues are removed from all images
prior to segmentation. For real image data, this can be
done using any of the techniques reported in Refs. [16,17].

4.1.2. Two volumetric overlap metrics

To quantify the overlap between the segmentation result
and the ground truth for each tissue, two volumetric over-
lap metrics are used in our experiments. The first one q1 is
described by Dice [18], and the other one is the Tanimoto
coefficient q2 [19]. For a given brain tissue i; i ¼ 1; 2; 3
for CSF, GM, and WM respectively, suppose that Ai and
Bi represent the sets of voxels labeled into class i by the
ground truth and by the segmentation result respectively.
jAij denotes the number of voxels in Ai. The Dice metric
q1 is an intuitive and plain one to consider the matching
area between Ai and Bi, defined as

q1 ¼
2jAi \ Bij
jAij þ jBij

: ð8Þ

The other one, the Tanimoto metric q2 is computed by

q2 ¼
jAi \ Bij
jAi [ Bij

; ð9Þ

where jAi \ Bij denotes the number of voxels classified as
class i by both the ground truth and the segmentation re-
sult, and jAi [ Bij denotes the number of voxels classified
as class i by either the ground truth or the segmentation re-
sult. Usually, for a given segmentation result and the
ground truth, the Dice metric q1 is no less than the Tanim-
oto metric q2.

4.2. Simulation test

In this subsection, we test our method with T1-weighted
simulated brain MR data, slice thickness of 1 mm, volume
size of 217� 181� 181, 3–9% noise levels and 20% inten-
sity inhomogeneity.

4.2.1. The efficiency of adaptive spatial distance in

ASGHSOM

To illustrate the efficiency of adaptive spatial distance in
ASGHSOM, we compare the segmentation results of

SOM, GHSOM (our method without using adaptive spa-
tial distance), and ASGHSOM with the ground truth. In
our experiments, the feature vector of SOM and GHSOM
is the same as that of ASGHSOM, and parameter selection
in the growing conditions of GHSOM is also the same as
that of ASGHSOM.

Fig. 4 demonstrates segmentation results on a single
slice ðz ¼ 68Þ with varying noise levels and 20% intensity
inhomogeneity. The SOM method is sensitive to noise
and obtains inaccurate segmentation results, particularly
on the boundary regions of different tissues, which can be
observed in the second column of Fig. 4. While taking
multi-scale segmentation, the results of GHSOM, shown
in the third column of Fig. 4, outperform those of conven-
tional SOM. But, it is still sensitive with high level noise,
demonstrated in the third and fourth rows of Fig. 4c, where
some voxels in GM regions are classified into WM. Inte-
grated with adaptive spatial distance, the ASGHSOM
algorithm could suppress the noise influence and obtains
more robust segmentation results even with the 9% noise
level exhibited in the fourth column of Fig. 4.

ASGHSOM is tested on simulated image data, not only
visually but also quantitatively. Fig. 5 shows the compari-
son segmentation results of the SOM, GHSOM, and
ASGHSOM algorithm with the ground truth (expert’s seg-
mentation results) on each tissue (CSF, GM, and WM)
according to the Dice performance metric q1. In these three
segmentation algorithms, we exploit the same input feature
vector and the same parameters in the network. The
parameters used in growing child SOMs are set as
G Thresh ¼ 14;M Thresh ¼ 4, and the parameter b used
in ASGHSOM is taken as 0.18. These parameters were
empirically found to give a good performance, and set as
the default parameters. It is clearly evident that the ASGH-
SOM method is robust to noise, and it can obtain smooth
segmentation results with the Dice performance metric
q1 > 90% for each tissue even with 9% noise level and
20% intensity inhomogeneity. From Fig. 5, it can be found
that for any of the three brain tissues, the maximum differ-
ence between the segmentation results of ASGHSOM with
two noise levels (3% and 9%) is no more than 3% in the
Dice performance metric. But, the maximum difference
between two noise levels (3% and 9%) is more than 5%
for GHSOM and 8% for SOM.

4.2.2. The efficiency of hierarchical structure in ASGHSOM
ASGHSOM is a hierarchical SOM, which could over-

come the problem of overlapping grey-scale intensities for
different tissues. To illustrate the efficiency of the hierarchi-
cal structure of ASGHSOM, we compare the segmentation
results of ASSOM (our method without hierarchical struc-
ture), and ASGHSOM with the ground truth on the simu-
lated brain MR images with 9% noise level and 20%
intensity inhomogeneity. Table 1 demonstrates quantitative
segmentation results according to the Dice overlap metric.
The comparison results show that ASGHSOM is obviously
superior to ASSOM.2 http://www.cma.mgh.harvard.edu/ibsr
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4.3. Parameter sensitivity analysis

In ASGHSOM, child SOMs have been generated to par-
tition the voxels on the boundary regions in a higher scale.

During this process, two parameters (G Thresh and
M Thresh) need to be determined that describe the charac-
teristic of the boundary regions. Another parameter b is
also important in ASGHSOM. It specifies the steepness

Fig. 4. Comparing the segmentation results of simulated T1-weighted MR slice 68 with different noise levels and 20% intensity inhomogeneity using SOM,
GHSOM, and ASGHSOM. Upper image: ground truth. Upper row: 3% noise level. Second row: 5% noise level. Third row: 7% noise level. Fourth row:
9% noise level. Columns: (a) original image; (b) SOM algorithm; (c) GHSOM algorithm; (d) ASGHSOM algorithm.

Fig. 5. Comparison of conventional SOM, GHSOM, and ASGHSOM with the ground truth on simulated MR data with different noise levels and 20%
spatial inhomogeneity, measured with the Dice performance metric q1. (a) CSF; (b) GM; (c) WM.
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of the sigmoid curve, which controls the influence degree of
the neighboring voxels on the center voxel. In this subsec-
tion, a sensitivity analysis on these parameters is discussed.

G Thresh and M Thresh: these parameters control the
growing process of ASGHSOM. Higher values of
G Thresh and M Thresh mean less child SOMs will be gen-
erated from the first output layer. This leads to some voxels
on the boundary regions not being partitioned again in a
higher scale to obtain an accurate segmentation result.
While, lower values mean more neurons in the first output
layer will generate their child SOMs. So the time for the
growing and training process will be longer.

b: when b is smaller, the noise-smoothing effect will be
suppressed. On the contrary, the image details would be
smoothed out. In ASGHSOM, we hope that the choice
of b could make the clustering process not only smooth
out the noise voxels but also preserve the image feature
in the local regions.

Segmentation performance is measured across several
cases on the simulated image data with 9% noise level
and 20% intensity inhomogeneity with the Dice perfor-
mance metric q1. We keep one parameter fixed while
changing the others, which is similar with [2,14]. Table 2
lists the segmentation performance in variation parameters
G Thresh and M Thresh with b ¼ 0:18. The default param-
eter set with G Thresh ¼ 14 and M Thresh ¼ 4 are empiri-
cally found to provide good results on most of the tested
image data. The rows and columns exhibit gradual modifi-
cation of G Thresh and M Thresh, respectively. When
increasing the G Thresh threshold from 12 to 18 and
increasing the M Thresh threshold from 3 to 6, minor
monotonic performance deterioration is generated with
about 0.6% for both GM and WM. The effect of b varia-
tion with G Thresh ¼ 14 and M Thresh ¼ 4 is exhibited in
Table 3. The performance deterioration with varying b is
no more than 3% for both GM and WM. As can be seen,

the ASGHSOM algorithm is insensitive to these
parameters.

4.4. Performance on real MR data

Twenty normal T1-weighted real data sets with a slice
thickness of 3.1 mm from IBSR are taken to validate the
efficiency of our proposed method. These data sets contain
varying levels of difficulty, with the worst scans consisting
of low-contrast and large spatial inhomogeneities. Six dif-
ferent segmentation algorithms are provided as part of
the IBSR website for comparison analysis, which are the
adaptive map (amap), the biased map (bmap), the fuzzy
c-means (fuzzy), the maximum a posteriori probability
(map), the tree-structure k-mean (tskm), and the maxi-
mum-likelihood (mlc) algorithm. The overlap metric used
by the IBSR repository is the Tanimoto performance met-
ric q2. Fig. 6 demonstrates the comparison results of our
method and these six methods with the ground truth
(expert’s segmentation results) on 20 real data sets (x-axis)
from IBSR, using the Tanimoto performance metric (y-
axis). The bold line in Fig. 6 corresponds to our algorithm.
The segmentation results indicate our clustering method
outperforms six different methods provided by the IBSR
website for both GM and WM on most of the data sets.

For comparison with the state-of-the-art segmentation
algorithm, we quote the comparison analysis results of
Marroquin’s algorithm and the constrained GMM algo-
rithm in [2]. Marroquin’s algorithm presents a fully auto-
matic Bayesian segmentation algorithm [14], and the
constrained GMM (CGMM) is an automatic segmentation
method using the constrained Gaussian Mixture Model [2].
To coincide with the experimental data sets in [2,14], 18
real MR data sets of 20 normal T1-weighted real data sets
are exploited except the data sets of 202_3 and 4_8. The
comparison results of various segmentation methods on
18 real brain MR data are shown in Table 4, according
to the mean and standard deviation of the Tanimoto per-
formance metric. Note that a higher mean value indicates
a better correspondence to the ground truth, and a lower
standard deviation value indicates robust segmentation
results on data sets with varying levels of difficulty. Our
method produces better segmentation results than six dif-
ferent methods provided from the IBSR website and
obtains similar results with Marroquin and CGMM meth-
ods on mean value.

Table 1
The quantitative comparison results of ASSOM and ASGHSOM with the
ground truth on simulated brain MR data with 9% noise level and 20%
intensity inhomogeneity, according to the Dice overlap metric.

CSF GM WM

ASSOM 0.9187 0.8824 0.8977
ASGHSOM 0.9134 0.9015 0.9152

Table 2
Sensitivity of the ASGHSOM algorithm performance in variation
parameters G Thresh and M Thresh measured on the simulated brain
MR image with 9% noise level and 20% intensity inhomogeneity,
according to the Dice performance metric.

G Thresh M Thresh

3 4 5 6

12 0.902, 0.915 0.902, 0.915 0.901, 0.913 0.896, 0.909
14 0.902, 0.915 0.902, 0.915 0.901, 0.913 0.896, 0.909
16 0.896, 0.909 0.896, 0.909 0.896, 0.909 0.896, 0.909
18 0.896, 0.909 0.896, 0.909 0.896, 0.909 0.896, 0.909

Table 3
Sensitivity of the ASGHSOM algorithm performance in variation
parameter b measured on the simulated brain MR image with 9% noise
level and 20% intensity inhomogeneity, according to the Dice performance
metric.

b GM WM

0.16 0.8726 0.8888
0.17 0.8959 0.9090
0.18 0.9015 0.9152
0.19 0.8915 0.9018
0.20 0.8925 0.8944
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In our work, the ASGHSOM method is designed to
overcome the noise influence and solve the overlapping

grey-scale intensities problem, but not to deal with the
intensity inhomogeneity problem. However, integrating
the feature vector-combining local information and adap-
tive spatial distance, our proposed method can deal with
the low level intensity inhomogeneity, such as the simulated
brain MR data with 20% intensity inhomogeneity. But, as
an unsupervised method without any prior information, it
can not work well with high level intensity inhomogeneity,
such as the real data set 6_10. Thus, the standard deviation
of our segmentation results is higher than that of CGMM.

Fig. 7 shows two slice images (z ¼ 19 and z ¼ 29) of real
MR data 6_10 with high level intensity inhomogeneity.
According to the ground truth shown in Fig. 7b and d,
the voxels in the red squares of Fig. 7a and c belong to
the same tissue class (WM), but the difference of their
intensity values is more than 30. Moreover, the intensity
values of GM in Fig. 7a are similar with the intensity values
of WM in Fig. 7c.

Generally, without prior information (probability map)
or user interaction, it is difficult to overcome the problem
of high level intensity inhomogeneity. Marroquin [14] has
proposed separate parametric, smooth models for the
intensity of each class to solve the high level intensity inho-
mogeneity problem, but the prior probabilities for each
class at each voxel location are computed based on the

Fig. 6. Comparing the ASGHSOM algorithm and six different algorithms
with ground truth on 20 real MR data sets from IBSR with the Tanimoto
performance metric q2. Up: GM; down: WM.

Table 4
Mean and standard deviation of the Tanimoto performance metric for
various segmentation methods, calculated over 18 real brain MR data
from the IBSR repository.

Method Source GM WM

Mean Std.Dev. Mean Std.Dev.

Adaptive MAP IBSR 0.57 0.13 0.58 0.17
Biased MAP IBSR 0.56 0.17 0.58 0.58
Fuzzy c-means IBSR 0.47 0.11 0.58 0.19
Maximum a posteriori

probability
IBSR 0.55 0.16 0.57 0.20

Tree-structure k-means IBSR 0.48 0.12 0.58 0.19
Maximum-likelihood IBSR 0.54 0.16 0.57 0.20
Marroquin Ref.

[14]
0.66 0.10 0.68 0.10

Constrained GMM Ref.
[2]

0.68 0.04 0.66 0.06

Our proposed method
(ASGHSOM)

0.69 0.08 0.66 0.07

Fig. 7. Two slice images (z ¼ 19 and z ¼ 29) of real MR data 6_10. (a) one slice image ðz ¼ 19Þ; (b) the ground truth of (a); (c) the other slice image
ðz ¼ 29Þ; (d) the ground truth of (c).
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brain atlas (probability map). CGMM [2] is an unsuper-
vised method without using any atlas, but the intensity
inhomogeneity is corrected based on fourth-degree polyno-
mial fitting as part of an EM algorithm [20], which obtains
the prior information from the atlas. As an unsupervised
clustering method without prior information, our proposed
method can not solve the problem of the high level inten-
sity inhomogeneity problem only depending on the local
information (the feature vector combining local informa-
tion and adaptive spatial distance).

The processing time of our method depends on the num-
ber of child SOMs on the second output layer, which is
generated dynamically according to the content of image
data. The average processing time is about 5 min for a sin-
gle real brain volume, executed on a 1.6 GHz pentium4
processor of a PC machine, with 512 MB memory, while,
it takes about 7 min for CGMM [2], executed on a single
3.0 GHz pentium4 processor, with 1 GB memory. Song
et al. [7] segmented the brain MR slice with a hybrid algo-
rithm, and their average processing time on a single slice is
2 min, running on a personal computer with a Pentium
3.0 GHz processor and 512 MB memory.

5. Conclusions

In this paper, we introduce an adaptive spatial clustering
approach for brain MR image segmentation. Based on the
competitive learning method – SOM, ASGHSOM is pro-
posed as the classifier, which fuses the competitive learning
clustering algorithm with multi-scale segmentation to over-
come the problem of overlapping grey-scale intensities on
the boundary regions of different tissues. Furthermore, an
adaptive spatial distance is integrated with ASGHSOM,
in which local spatial information is considered in the clus-
tering process to reduce the noise effect and the classifica-
tion ambiguity.

Our proposed clustering method is validated by exten-
sive experiments using both simulated and real MR data.
To illustrate its efficacy, we compare the segmentation
results with SOM and GHSOM on simulated MR data
with varying noise levels, both visually and quantitatively.
The results in Fig. 4 show that our method is more robust
to noise than others. In addition, quantitative comparison
with state-of-the-art methods (Marroquin’s algorithm and
the CGMM method) and six classic approaches provided
by the IBSR website is performed on real T1-weighted
MR data. Table 4 demonstrates that our method outper-
forms six classic methods, and has similar results with Mar-
roquin’s algorithm and the CGMM method on the mean
value, but higher standard deviation value than the
CGMM method.

Our proposed method is designed to overcome the noise
influence and solve the overlapping grey-scale intensities
problem. It can also deal with the image data with low level
intensity inhomogeneity, but it does not work well with
higher level intensity inhomogeneity. In further research,

we will extend our work to deal with the intensity inhomo-
geneity problem.
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